Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Комсомольский-на-Амуре государственный университет»

УТВЕРЖДАЮ

Декан факультета

А.С. Гудим

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ «Датчики и устройства сбора информации»

Направление подготовки	11.04.04 Электроника и наноэлектроника					
Направленность (профиль)	Промышленная электроника					
образовательной программы						
Обеспечивающее подразделение						
Кафедра «Промышленная электроника»						

Разработчик рабочей программы:	
Доцент кафедры, кандидат техни-	
ческих наук, доцент	С.Г. Марущенко
(должность, степень, ученое звание)	(ФИО)
СОГЛАСОВАНО:	
Заведующий кафедрой	
Промышленная электроника	
(наименование кафедры)	Н.Н. Любушкина
	(ФИО)

1 Общие положения

Рабочая программа и фонд оценочных средств дисциплины «Датчики и устройства сбора информации» составлены в соответствии с требованиями федерального государственного образовательного стандарта, утвержденного приказом Министерства образования и науки Российской Федерации № 959 от 22.09.2017, и основной профессиональной образовательной программы «Промышленная электроника» по направлению 11.04.04 Электроника и наноэлектроника.

Задачи	Познакомить студентов с первичными устройствами съема технологиче-
дисциплины	ской информации; показать студентам физические принципы работы
	данных устройств, их конструкции и особенностями применения в сис-
	темах сбора и обработки информации.
Основные	Основные характеристики измерительных преобразователей.
разделы / темы	Методы и средства формирования выходных электрических информа-
дисциплины	тивных сигналов в ИП.
	Усилители для нормирования сигналов.
	АЦП для нормирования сигналов с датчиков.

2 Перечень планируемых результатов обучения по дисциплине (модулю), соотнесенных с индикаторами достижения компетенций

Процесс изучения дисциплины «Датчики и устройства сбора информации» направлен на формирование следующих компетенций в соответствии с ФГОС ВО и основной образовательной программой (таблица 1):

Таблица 1 – Компетенции и индикаторы их достижения

Код и наименование	Индикаторы достижения	Планируемые результаты					
компетенции		обучения по дисциплине					
	Профессиональные						
ПК-2 Способен оп-	ПК-2.1	Знать методику разработки					
ределять цели, осу-	Знает схемы и устройства изде-	принципиальных схем аппа-					
ществлять поста-	лий микро- и наноэлектроники	ратных средств интеллекту-					
новку задач проек-	различного функционального	альных датчиков.					
тирования элек-	назначения.						
тронных приборов,	ПК-2.2	Уметь выбирать датчики, ис-					
схем и устройств	Умеет разрабатывать техниче-	ходя из требований техниче-					
различного функ-	ские задания на выполнение	ского задания и контролируе-					
ционального назна-	проектных работ.	мой физической или техниче-					
чения, подготавли-		ской величины.					
вать технические	ПК-2.3	Владеть навыками анализа и					
задания на выполне-	Владеет навыками разработки	разработки структурных и					
ние проектных ра-	архитектуры изделий микро- и	принципиальных схем аппа-					
бот.	наноэлектроники	ратных средств систем сбора					
		информации.					

3 Место дисциплины (модуля) в структуре образовательной программы

Дисциплина входит в состав блока 1 «Дисциплины (модули)» и относится к части, формируемой участниками образовательных отношений..

Место дисциплины (этап формирования компетенции) отражено в схеме форми-

рования компетенций, представленной в документе *Оценочные материалы*, размещенном на сайте университета *www.knastu.ru* / *Наш университет* / *Образование* / 11.04.04 Электроника и наноэлектроника /Оценочные материалы).

Дисциплина «Датчики и устройства сбора информации» частично реализуется в форме практической подготовки. Практическая подготовка организуется путем проведения / выполнения практических занятий, лабораторных работ, выполнения курсовых проектов, иных видов учебной деятельности.

Практическая подготовка реализуется на основе:

Профессиональный стандарт 40.035 «ИНЖЕНЕР-КОНСТРУКТОР АНАЛОГОВЫХ СЛОЖНОФУНКЦИОНАЛЬНЫХ БЛОКОВ». Обобщенная трудовая функция: D. Сопровождение работ по проекту, контроль требований технического задания на аналоговый СФ-блок и отдельные аналоговые блоки.

- ПС 40.035 ТФ 3.4.5 НЗ-2 Типовые аналоговые блоки, маршрут проектирования аналоговых систем и роль поведенческого описания в маршруте проектирования аналоговых блоков, особенности разработки аналоговых СФ- блоков и методы интеграции СФ-блоков, методы верификации СФ-блоков
- ПС 40.035 ТФ 3.4.5 НУ-2 Разрабатывать мосты для соединения устройств с различными интерфейсными характеристиками и работающих на различных частотах, верифицировать разрабатываемый аналоговый СФ-блок.
 - 4 Содержание дисциплины (модуля), структурированное по темам (разделам) с указанием отведенного на них количества академических часов и видов учебной работы

4.1 Структура и содержание дисциплины для очной формы обучения

Дисциплина «Методы цифровой обработки сигналов» изучается на 1 курсе(ах) во 2 семестре.

Общая трудоёмкость дисциплины составляет 4 з.е., 144 ч., в том числе контактная работа обучающихся с преподавателем 43 ч., промежуточная аттестация в форме экзамена 35 ч., самостоятельная работа обучающихся 66 ч.

	Виды учебной работы, включая самостоятельную ра-					
	боту обучающихся и трудоемкость (в часах)					
		нтактная ра				
Наименование разделов, тем и со-	преподавателя с обучающи-					
держание материала		мися		ИКР	Пром.	СРС
	Помини	Практи-	Лабора-	YIIXI	аттест.	
	Лекции	ческие	торные			
D 10		занятия	работы			
Раздел 1 Основные характеристи-						
ки измерительных преобразовате-						
лей						
Тема 1.1 Классификация (систематизация) ПИП.	2					
Знакомство с работой учебного						
стенда «Промышленные датчики			2			
технологической информации».						
Основные термины и определе-						
ния: датчик, измерительное пре-						2
образование, измерительный пре-						
образователь, чувствительный						

	_	-	оты, включа		-	-
	-		ихся и труд	OCMKOCT	ь (в часах	<i>)</i>
11	Контактная работа преподавателя с обучающи-					
Наименование разделов, тем и со-	препода		учающи-			
держание материала		мися		ИКР	КР Пром.	CPC
		Практи-	Лабора-	11111	аттест.	01 0
	Лекции	ческие	торные			
		занятия	работы			
элемент. Классификация (систематизация) ПИП.						
Тема 1.2 Статические и динами-	2					
ческие характеристики ПИП.	2					
Знакомство с работой учебного						
стенда «Датчики механических			2			
величин».			_			
Статические характеристики измерительных преобразователей.						
1 -						
Динамические характеристики						
измерительных преобразователей.						4
Передаточная функция ИП, пере-						4
ходная характеристика, импульс-						
ная характеристика. ИП первого и						
второго порядков. Динамические						
погрешности ИП.						
Изучение датчиков тока и напря-			2			
жения.			2			
Раздел 2 Методы и средства фор-						
мирования выходных электриче-						
ских информативных сигналов в						
ИП						
Тема 2.1 Схемы формирования						
сигналов параметрических и гене-	2					
раторных ИП.						
Основные схемы включения дат-						
чиков. Потенциометрические						
схемы: с источником опорного						
напряжения, с источником опор-						6
ного тока. Схемы на основе опе-						
рационных усилителей.						
Выбор и обоснование мостовой						
схемы измерительного преобразо-						
вателя. Расчет отклика моста, рас-						5
чет схемы линеаризации. Обосно-						
вание выбора элементов (РГР).						
Изучение датчиков температуры.			2			1
Тема 2.2 Мостовые схемы фор-			<u> </u>			
мирования сигналов параметриче-	2					
ских ИП.						
Мостовые схемы включения ИП:						1
						6
мост Уитстона, четверть мост, по-						0
лумост, полный мост. Питание			<u> </u>			<u> </u>

	-	-	ты, включа		•	-
	боту обучающихся и трудоемкость (в часах				.)	
***		нтактная ра				
Наименование разделов, тем и со-	препода	вателя с об	учающи-		-	
держание материала		МИСЯ		ИКР	Пром.	CPC
	_	Практи-	Лабора-		аттест.	
	Лекции	ческие	торные			
		занятия	работы			
мостовых схем. Мосты перемен-						
ного тока.						
Выбор элементов и расчет схемы						
предварительного усилителя сиг-						5
нала с датчика (РГР).						
Изучение датчиков магнитного			4*			
поля.			•			
Раздел 3 Усилители для нормиро-						
вания сигналов						
Тема 3.1 Характеристики преци-						
зионных операционных усилите-	1					
лей.						
Обобщенная модель напряжения						
смещения операционного усили-						
теля. Анализ нелинейности ра-						
зомкнутого коэффициента пере-						5
дачи по постоянному току. Ана-						
лиз шумов операционного усили-						
теля.						
Изучение датчика освещенности.			4			
Проектирование активного анало-						
гового фильтра, выбор схемы,						5
расчет элементов (РГР).						
Тема 3.2 Инструментальные уси-						
лители. Изолированные усилите-	1					
ли.						
Особенности включения операци-						
онных усилителей с однополяр-						
ным питанием. Инструменталь-						5
ные усилители, схемы включения						
инструментальных усилителей.						
Изучение бесконтактных конеч-			2*			
ных выключателей.			<i>L</i>			
Изучение датчиков линейного пе-			2*			
ремещения.			<u> </u>			
Выбор и обоснование схемы со-						
гласующего усилителя, расчет						5
элементов (РГР).						
Раздел 4 АЦП для нормирования						
сигналов с датчиков.						
Тема 4.1 АЦП последовательного	2					
приближения.						
АЦП последовательного прибли-						4

	-	-	ты, включа		-	
	боту обучающихся и трудоемкость (в часах)					
		нтактная ра				
Наименование разделов, тем и со-	препода	вателя с об				
держание материала		мися		ИКР	Пром.	CPC
		Практи-	Лабора-	riiti	аттест.	CIC
	Лекции	ческие	торные			
		занятия	работы			
жения с мультиплексируемыми						
входами. Сигма-дельта АЦП. Из-						
мерительные низкочастотные						
сигма-дельта АЦП высокого раз-						
решения. Применение сигма-						
дельта АЦП в измерителях мощ-						
ности.						
Изучение датчиков частоты вра-			4*			
щения.			4**			
Выбор и обоснование схемы						5
АЦП, расчет элементов (РГР).						3
Тема 4.2 Законченные системы	2					
сбора данных на кристалле.	2					
Примеры законченных систем						4
сбора данных на одном кристалле.						4
Изучение датчиков углового по-			4*			
ложения.			4'			
Синтез принципиальной электри-						
ческой схемы измерительного ка-						5
нала (РГР).						
Экзамен	-	-	-	1	35	_
ИТОГО	14		28	1	35	66
по дисциплине	14	-	40	1	33	UU

^{*} реализуется в форме практической подготовки

5 Оценочные средства для проведения текущего контроля и промежуточной аттестации обучающихся по дисциплине (модулю)

Фонды оценочных средств для проведения текущего контроля успеваемости и промежуточной аттестации обсуждаются и утверждаются на заседании кафедры. Полный комплект контрольных заданий или иных материалов, необходимых для оценивания результатов обучения по дисциплине (модулю) хранится на кафедре-разработчике в бумажном или электронном виде, также фонды оценочных средств доступны студентам в личном кабинете — раздел учебно-методическое обеспечение.

6 Учебно-методическое и информационное обеспечение дисциплины (модуля)

6.1 Основная и дополнительная литература

Перечень рекомендуемой основной и дополнительной литературы представлен на сайте университета www.knastu.ru / Haw университет / Образование / 11.04.04 Электроника и наноэлектроника / Рабочий учебный план / Реестр литературы.

6.2 Методические указания для студентов по освоению дисциплины

1) Изучение магнитного поля соленоида с помощью датчика Холла: методические указания к лабораторной работе по курсу «Датчики и устройства сбора информации» / сост. Марущенко С.Г. – Комсомольск-на-Амуре: ФГБОУ ВО «КнАГТУ», 2012. – 10 с.

6.3 Современные профессиональные базы данных и информационные справочные системы, используемые при осуществлении образовательного процесса по дисциплине

Каждому обучающемуся обеспечен доступ (удаленный доступ), в том числе в случае применения электронного обучения, дистанционных образовательных технологий, к современным профессиональным базам данных и информационным справочным системам, с которыми у университета заключен договор.

Перечень рекомендуемых профессиональных баз данных и информационных справочных систем представлен на сайте университета www.knastu.ru / Наш университет / Образование / 11.04.04 Электроника и наноэлектроника / Рабочий учебный план / Реестр ЭБС.

Актуальная информация по заключенным на текущий учебный год договорам приведена на странице Научно-технической библиотеки (НТБ) на сайте университета

https://knastu.ru/page/3244

6.4 Перечень ресурсов информационно-телекоммуникационной сети «Интернет», необходимых для освоения дисциплины (модуля)

На странице НТБ можно воспользоваться интернет-ресурсами открытого доступа по укрупненной группе направлений и специальностей (УГНС) 11.04.04 Электроника и наноэлектроника:

https://knastu.ru/page/539

7 Организационно-педагогические условия

Организация образовательного процесса регламентируется учебным планом и расписанием учебных занятий. Язык обучения (преподавания) - русский. Для всех видов аудиторных занятий академический час устанавливается продолжительностью 45 минут.

При формировании своей индивидуальной образовательной траектории обучающийся имеет право на перезачет соответствующих дисциплин и профессиональных модулей, освоенных в процессе предшествующего обучения, который освобождает обучающегося от необходимости их повторного освоения.

7.1 Образовательные технологии

Учебный процесс при преподавании курса основывается на использовании традиционных, инновационных и информационных образовательных технологий. Традиционные образовательные технологии представлены лекциями и семинарскими (практическими) занятиями. Инновационные образовательные технологии используются в виде широкого применения активных и интерактивных форм проведения занятий. Информационные образовательные технологии реализуются путем активизации самостоятельной работы студентов в информационной образовательной среде.

7.2 Занятия лекционного типа

Лекционный курс предполагает систематизированное изложение основных вопросов учебного плана.

На первой лекции лектор обязан предупредить студентов, применительно к какому базовому учебнику (учебникам, учебным пособиям) будет прочитан курс.

Лекционный курс должен давать наибольший объем информации и обеспечивать более глубокое понимание учебных вопросов при значительно меньшей затрате времени, чем это требуется большинству студентов на самостоятельное изучение материала.

7.3 Занятия семинарского типа

Семинарские занятия представляют собой детализацию лекционного теоретического материала, проводятся в целях закрепления курса и охватывают все основные разделы.

Основной формой проведения семинаров является обсуждение наиболее проблемных и сложных вопросов по отдельным темам, а также разбор примеров и ситуаций в аудиторных условиях. В обязанности преподавателя входят: оказание методической помощи и консультирование студентов по соответствующим темам курса.

Активность на семинарских занятиях оценивается по следующим критериям:

- ответы на вопросы, предлагаемые преподавателем;
- участие в дискуссиях;
- выполнение проектных и иных заданий;
- ассистирование преподавателю в проведении занятий.

Ответ должен быть аргументированным, развернутым, не односложным, содержать ссылки на источники.

Доклады и оппонирование докладов проверяют степень владения теоретическим материалом, а также корректность и строгость рассуждений.

Оценивание заданий, выполненных на семинарском занятии, входит в накопленную оценку.

7.4 Самостоятельная работа обучающихся по дисциплине (модулю)

Самостоятельная работа студентов — это процесс активного, целенаправленного приобретения студентом новых знаний, умений без непосредственного участия преподавателя, характеризующийся предметной направленностью, эффективным контролем и оценкой результатов деятельности обучающегося.

Цели самостоятельной работы:

- · систематизация и закрепление полученных теоретических знаний и практических умений студентов;
 - углубление и расширение теоретических знаний;
- · формирование умений использовать нормативную и справочную документацию, специальную литературу;
- развитие познавательных способностей, активности студентов, ответственности и организованности;
- формирование самостоятельности мышления, творческой инициативы, способностей к саморазвитию, самосовершенствованию и самореализации;
 - развитие исследовательских умений и академических навыков.

Самостоятельная работа может осуществляться индивидуально или группами студентов в зависимости от цели, объема, уровня сложности, конкретной тематики.

Технология организации самостоятельной работы студентов включает использование информационных и материально-технических ресурсов университета.

Контроль результатов внеаудиторной самостоятельной работы студентов может проходить в письменной, устной или смешанной форме.

Студенты должны подходить к самостоятельной работе как к наиважнейшему средству закрепления и развития теоретических знаний, выработке единства взглядов на отдельные вопросы курса, приобретения определенных навыков и использования профессиональной литературы.

7.5 Методические рекомендации для обучающихся по освоению дисциплины

При изучении дисциплины обучающимся целесообразно выполнять следующие рекомендации:

- 1. Изучение учебной дисциплины должно вестись систематически.
- 2. После изучения какого-либо раздела по учебнику или конспектным материалам рекомендуется по памяти воспроизвести основные термины, определения, понятия раздела.
- 3. Особое внимание следует уделить выполнению отчетов по практическим занятиям и индивидуальным комплексным заданиям на самостоятельную работу.
- 4. Вся тематика вопросов, изучаемых самостоятельно, задается на лекциях преподавателем. Им же даются источники (в первую очередь вновь изданные в периодической научной литературе) для более детального понимания вопросов, озвученных на лекции.

При самостоятельной проработке курса обучающиеся должны:

- просматривать основные определения и факты;
- · повторить законспектированный на лекционном занятии материал и дополнить его с учетом рекомендованной по данной теме литературы;
- изучить рекомендованную литературу, составлять тезисы, аннотации и конспекты наиболее важных моментов;
 - самостоятельно выполнять задания, аналогичные предлагаемым на занятиях;
 - использовать для самопроверки материалы фонда оценочных средств.

8 Материально-техническое обеспечение, необходимое для осуществления образовательного процесса по дисциплине (модулю)

8.1 Лицензионное и свободно распространяемое программное обеспечение, используемое при осуществлении образовательного процесса по диспиплине

Университет обеспечен необходимым комплектом лицензионного и свободно распространяемого программного обеспечения, в том числе отечественного производства. Состав программного обеспечения, необходимого для освоения дисциплины, приведен на сайте университета www.knastu.ru / Haw yниверситет / Образование / 11.04.04 Электроника и наноэлектроника / Рабочий учебный план / Реестр ПО.

Актуальные на текущий учебный год реквизиты / условия использования программного обеспечения приведены на странице ИТ-управления на сайте университета:

https://knastu.ru/page/1928

8.2 Учебно-лабораторное оборудование

Аудитория	Наименование аудитории (лаборатории)	Используемое оборудование
211/3	Лаборатория компьютерно-	персональные компьютеры
	го проектирования и моде-	
	лирования	
211/3	Лаборатория компьютерно-	лабораторный стенд Промышленные датчики
	го проектирования и моде-	технологической информации
	лирования	

211/3	Лаборатория компьютерно-	лабораторный	стенд	Датчики	механических
	го проектирования и моде-	величин			
	лирования				

8.3 Технические и электронные средства обучения

Лекционные занятия.

Аудитории для лекционных занятий укомплектованы мебелью и техническими средствами обучения, служащими для представления учебной информации большой аудитории (наборы демонстрационного оборудования (проектор, экран, компьютер/ноутбук), учебно-наглядные пособия, тематические иллюстрации).

Практические занятия (при наличии).

Аудитории для практических занятий укомплектованы специализированной мебелью и техническими средствами обучения (проектор, экран, компьютер/ноутбук).

Лабораторные занятия (при наличии).

Для лабораторных занятий используется аудитория, оснащенная оборудованием, указанным в табл. п. 8.2.

Самостоятельная работа.

Помещения для самостоятельной работы оснащены компьютерной техникой с возможностью подключения к сети «Интернет» и доступом к электронной информационнообразовательной среде КнАГУ:

- зал электронной информации НТБ КнАГУ;
- компьютерные классы факультета.

9 Иные сведения

Методические рекомендации по обучению лиц с ограниченными возможностями здоровья и инвалидов

Освоение дисциплины обучающимися с ограниченными возможностями здоровья может быть организовано как совместно с другими обучающимися, так и в отдельных группах. Предполагаются специальные условия для получения образования обучающимися с ограниченными возможностями здоровья.

Профессорско-педагогический состав знакомится с психолого-физиологическими особенностями обучающихся инвалидов и лиц с ограниченными возможностями здоровья, индивидуальными программами реабилитации инвалидов (при наличии). При необходимости осуществляется дополнительная поддержка преподавания тьюторами, психологами, социальными работниками, прошедшими подготовку ассистентами.

В соответствии с методическими рекомендациями Минобрнауки РФ (утв. 8 апреля 2014 г. N АК-44/05вн) в курсе предполагается использовать социально-активные и рефлексивные методы обучения, технологии социокультурной реабилитации с целью оказания помощи в установлении полноценных межличностных отношений с другими студентами, создании комфортного психологического климата в студенческой группе. Подбор и разработка учебных материалов производятся с учетом предоставления материала в различных формах: аудиальной, визуальной, с использованием специальных технических средств и информационных систем.

Освоение дисциплины лицами с OB3 осуществляется с использованием средств обучения общего и специального назначения (персонального и коллективного использования). Материально-техническое обеспечение предусматривает приспособление аудиторий к нуждам лиц с OB3.

Форма проведения аттестации для студентов-инвалидов устанавливается с учетом индивидуальных психофизических особенностей. Для студентов с ОВЗ предусматривается доступная форма предоставления заданий оценочных средств, а именно:

- · в печатной или электронной форме (для лиц с нарушениями опорнодвигательного аппарата);
- · в печатной форме или электронной форме с увеличенным шрифтом и контрастностью (для лиц с нарушениями слуха, речи, зрения);
 - методом чтения ассистентом задания вслух (для лиц с нарушениями зрения).

Студентам с инвалидностью увеличивается время на подготовку ответов на контрольные вопросы. Для таких студентов предусматривается доступная форма предоставления ответов на задания, а именно:

- письменно на бумаге или набором ответов на компьютере (для лиц с нарушениями слуха, речи);
- · выбором ответа из возможных вариантов с использованием услуг ассистента (для лиц с нарушениями опорно-двигательного аппарата);
 - устно (для лиц с нарушениями зрения, опорно-двигательного аппарата).

При необходимости для обучающихся с инвалидностью процедура оценивания результатов обучения может проводиться в несколько этапов.